skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Carranza, Magdalena_M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The strength and variability of the Southern Ocean carbon sink is a significant source of uncertainty in the global carbon budget. One barrier to reconciling observations and models is understanding how synoptic weather patterns modulate air-sea carbon exchange. Here, we identify and track storms using atmospheric sea level pressure fields from reanalysis data to assess the role that storms play in driving air-sea CO2exchange. We examine the main drivers of CO2fluxes under storm forcing and quantify their contribution to Southern Ocean annual air-sea CO2fluxes. Our analysis relies on a forced ocean-ice simulation from the Community Earth System Model, as well as CO2fluxes estimated from Biogeochemical Argo floats. We find that extratropical storms in the Southern Hemisphere induce CO2outgassing, driven by CO2disequilibrium. However, this effect is an order of magnitude larger in observations compared to the model and caused by different reasons. Despite large uncertainties in CO2fluxes and storm statistics, observations suggest a pivotal role of storms in driving Southern Ocean air-sea CO2outgassing that remains to be well represented in climate models, and needs to be further investigated in observations. 
    more » « less
  2. Abstract The Southern Ocean (south of 30°S) contributes significantly to global ocean carbon uptake through the solubility, physical and biological pumps. Many studies have estimated carbon export to the deep ocean, but very few have attempted a basin‐scale perspective, or accounted for the sea‐ice zone (SIZ). In this study, we use an extensive array of BGC‐Argo floats to improve previous estimates of carbon export across basins and frontal zones, specifically including the SIZ. Using a new method involving changes in particulate organic carbon and dissolved oxygen along the mesopelagic layer, we find that the total Southern Ocean carbon export from 2014 to 2022 is 2.69 ± 1.23 PgC y−1. The polar Antarctic zone contributes the most (41%) with 1.09 ± 0.46 PgC y−1. Conversely, the SIZ contributes the least (8%) with 0.21 ± 0.09 PgC y−1and displays a strong shallow respiration in the upper 200 m. However, the SIZ contribution can increase up to 14% depending on the depth range investigated. We also consider vertical turbulent fluxes, which can be neglected at depth but are important near the surface. Our work provides a complementary approach to previous studies and is relevant for work that focuses on evaluating the biogeochemical impacts of changes in Antarctic sea‐ice extent. Refining estimates of carbon export and understanding its drivers ultimately impacts our comprehension of climate variability at the global ocean scale. 
    more » « less